函数的递归调用

  • 2017-08-24
  • 33

西安网站制作 函数的递归调用

一个函数在它的函数体内调用它自身称为递归调用。这种函数称为递归函数。C语言允许函数的递归调用。在递归调用中,主调函数又是被调函数。执行递归函数将反复调用其自身,每调用一次就进入新的一层。

例如有函数f如下:

    int f(int x)

    {

      int y;

      z=f(y);

      return z;

}

这个函数是一个递归函数。但是运行该函数将无休止地调用其自身,这当然是不正确的。为了防止递归调用无终止地进行,必须在函数内有终止递归调用的手段。常用的办法是加条件判断,满足某种条件后就不再作递归调用,然后逐层返回。下面举例说明递归调用的执行过程。

【例8.5】用递归法计算n!

用递归法计算n!可用下述公式表示:

    n!=1         (n=0,1)

    n×(n-1)!    (n>1)

按公式可编程如下:

long ff(int n)

{

    long f;

    if(n<0) printf("n<0,input error");

    else if(n==0||n==1) f=1;

    else f=ff(n-1)*n;

    return(f);

}

main()

{

    int n;

    long y;

    printf("\ninput a inteager number:\n");

    scanf("%d",&n);

    y=ff(n);

    printf("%d!=%ld",n,y);

}

程序中给出的函数ff是一个递归函数。主函数调用ff 后即进入函数ff执行,如果n<0,n==0n=1时都将结束函数的执行,否则就递归调用ff函数自身。由于每次递归调用的实参为n-1,即把n-1的值赋予形参n,最后当n-1的值为1时再作递归调用,形参n的值也为1,将使递归终止。然后可逐层退回。

下面我们再举例说明该过程。设执行本程序时输入为5,即求5!。在主函数中的调用语句即为y=ff(5),进入ff函数后,由于n=5,不等于01,故应执行f=ff(n-1)*n,f=ff(5-1)*5。该语句对ff作递归调用即ff(4)

进行四次递归调用后,ff函数形参取得的值变为1,故不再继续递归调用而开始逐层返回主调函数。ff(1)的函数返回值为1,ff(2)的返回值为1*2=2,ff(3)的返回值为2*3=6,ff(4)的返回值为6*4=24,最后返回值ff(5)为24*5=120。

8.5也可以不用递归的方法来完成。如可以用递推法,即从1开始乘以2,再乘以3直到n。递推法比递归法更容易理解和实现。但是有些问题则只能用递归算法才能实现。典型的问题是Hanoi塔问题。

【例8.6】Hanoi塔问题

    一块板上有三根针,A,B,C。A针上套有64个大小不等的圆盘,大的在下,小的在上。如图5.4所示。要把这64个圆盘从A针移动C针上,每次只能移动一个圆盘,移动可以借助B针进行。但在任何时候,任何针上的圆盘都必须保持大盘在下,小盘在上。求移动的步骤。

本题算法分析如下,设A上有n个盘子。

如果n=1,则将圆盘从A直接移动到C。

如果n=2,则:

1.将A上的n-1(等于1)个圆盘移到B上;

2.再将A上的一个圆盘移到C上;

3.最后将B上的n-1(等于1)个圆盘移到C上。

  如果n=3,则:

A. 将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:

(1)将A上的n`-1(等于1)个圆盘移到C上。

(2)将A上的一个圆盘移到B。

(3)将C上的n`-1(等于1)个圆盘移到B。

B. 将A上的一个圆盘移到C。

C. 将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:

(1)将B上的n`-1(等于1)个圆盘移到A。

(2)将B上的一个盘子移到C。

(3)将A上的n`-1(等于1)个圆盘移到C。

   到此,完成了三个圆盘的移动过程。

    从上面分析可以看出,当n大于等于2时,移动的过程可分解为三个步骤:

第一步  A上的n-1个圆盘移到B上;

第二步  A上的一个圆盘移到C上;

第三步  B上的n-1个圆盘移到C上;其中第一步和第三步是类同的。

n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。 显然这是一个递归过程,据此算法可编程如下:

move(int n,int x,int y,int z)

{

    if(n==1)

      printf("%c-->%c\n",x,z);

    else

    {

      move(n-1,x,z,y);

      printf("%c-->%c\n",x,z);

      move(n-1,y,x,z);

    }

}

main()

{

    int h;

    printf("\ninput number:\n");

    scanf("%d",&h);

    printf("the step to moving %2d diskes:\n",h);

    move(h,'a','b','c');

}

    从程序中可以看出,move函数是一个递归函数,它有四个形参n,x,y,z。n表示圆盘数,x,y,z分别表示三根针。move 函数的功能是把x上的n个圆盘移动到z上。当n==1时,直接把x上的圆盘移至z上,输出xz。如n!=1则分为三步:递归调用move函数,把n-1个圆盘从x移到y;输出xz;递归调用move函数,把n-1个圆盘从y移到z。在递归调用过程中n=n-1,故n的值逐次递减,最后n=1时,终止递归,逐层返回。当n=4 时程序运行的结果为:

    input number:

    4

    the step to moving 4 diskes:

    ab

    ac

    bc

    ab

    ca

    cb

    ab

    ac

    bc

    ba

    ca

    bc

    ab

    ac

bc

西安网站制作